Exam.Code: 0033 Sub. Code: 0960

1128

B.Sc. (Hons.) Biotechnology First Semester

BIOT-Sem-I-III-T (a): Mathematics

Time allowed: 3 Hours

Max. Marks: 67

NOTE: Attempt <u>five</u> questions in all, including Question No. I (Section-A) which is compulsory and selecting two questions each from Section B-C.

x-x-x

Section-A

1. (a) Prove that $\sqrt{3}$ is an irrational number.

(b) $Simplify: \frac{(64)^{2/3} \times (81)^{3/4}}{(27)^{2/3}}$

(c) Express $\frac{5-\sqrt{3}}{2+\sqrt{3}}$ in the form $a+b\sqrt{3}$, where a,b are integers.

(5,4,4)

2. (a) Convert $\frac{1+7i}{(2-i)^2}$ in the Polar form.

(b) If
$$x + iy = \frac{(a+i)^2}{2a^2+1}$$
, prove that $x^2 + y^2 = \frac{(a^2+1)^2}{(2a^2+1)^2}$

(c) If
$$\left(\frac{1}{1-2i} + \frac{3}{1+i}\right) \left(\frac{3+4i}{2-4i}\right) = a + ib$$
, find a and b.

(5,4,4)

- 3. (a) A college awarded 38 medals in football, 15 in basketball and 20 in Cricket. If these medals went to a total of 58 students and only three students got medals in all the three sports, how many students received medals in exactly two of the three sports?
 - (b) Let $A = \{1,2,3,4,5\}$. Define a relation R on A defined by :

$$R = \{(x, y): y = 2x - 1\}$$

- (i) Write R in roster form.
- (ii) Depict this relation using an arrow diagram.
- (iii) Write down the domain, codomain and range of R.
- (c) Draw the graph of the modulus function. Also, write its domain and range.

(5,4,4)

4. (a) Evaluate: $\lim_{x\to 0} \frac{(\sin 7x + 6x)}{(7x + \sin 6x)}$

(b) Suppose
$$f(x) = \begin{cases} 5, & x \le 2 \\ ax + b, & 2 < x < 10 \\ 21, & x \ge 10 \end{cases}$$
 and if $\lim_{x \to 2} f(x)$ and $\lim_{x \to 10} f(x)$ both exists, find the values of a and b .

(c) Evaluate:
$$\lim_{x\to 1} \left(\frac{2}{1-x^2} + \frac{1}{x-1}\right)$$

(5,4,4)

Section-B

5. (a) Find $\frac{dy}{dx}$, if $y^x + x^y = a^b$

- (b) A balloon, which always remains spherical on inflation, is being inflated by pumping in 900 cm³ of gas per second. Find the rate at which the radius of the balloon increases when the radius is 15cm.
- (c) Find local maximum and local minimum values of the function f given by $f(x) = x^3 6x^2 + 9x + 15$

(5,4,4)

6. (a) Evaluat : $\int e^{2x} \sin x \, dx$ (b) Find the area bounded by the curve $x^2 = 4y$ and the straight line

$$x = 4y - 2.$$

(c) $Solve: (x + y - 5) \frac{dx}{dy} = 1$

(5,4,4

7. (a) Solve the following Linear Programming Problem graphically:

Maximize z = 1000x + 600y

Subject to :
$$x + y \le 200$$

$$x \ge 20$$

$$y \ge 4x$$

 $x, y \ge 0$

(b) In a study of diabetic patients, the following data was obtained:

Age(in years)	10-20	20-30	30-40	40-50	50-60	60-70	70-80
No. of patients	3	8	30	36	27	15	6

Draw the histogram and a frequency curve for the above data.

8. (a) Calculate the mean, variance and standard deviation for the following frequecy distribution:

Classes	0-30	30-60	60-90	90-120	120-150	150-180	180-210
Frequency	2	3	5	10	3	5	2

8. (b) Calculate median, first quartile and 85th percentile for the following data:

Classes	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40
Frequency	75	250	350	192	68	35	24	6

(7,6)

Section – C (Compulsory Questions)

9. (a) Let $A = \{1,2,3,4,5\}$, $B = \{1,3,5\}$, Find A - B and B - A. (2)

(b) $Simplify: \frac{(5-4i)(4+5i)}{(4+3i)}$ (2)

(c) Differentiate $e^{\sin^2 x}$ w.r.t $\sin x$. (2)

(d) Evaluate $\int \frac{\sqrt{\tan x}}{\sin x \cos x} dx$ (2)

(e) Show that the function $f(x) = \log \sin x$ is strictly increasing on $\left(0, \frac{\pi}{2}\right)$. (2)

(f) Form a differential equation of the family of curves $\frac{x}{a} + \frac{y}{b} = 1, by eliminating the arbitary constants a and b.$ (2)

(g) Find the median, lower quartile and upper quartile of the following numbers: 5, 22, 6, 3, 7, 33, 9